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Abstract: Non-invasive prenatal testing (NIPT), a genetic screening technology based on cell-free 
fetal DNA (cfDNA) in maternal peripheral blood, has become a crucial approach for the early 
detection of fetal chromosomal abnormalities. However, its detection accuracy and optimal testing 
window are influenced by multiple factors, including gestational age, maternal body mass index 
(BMI), and sequencing quality. To address the mismatch between unified testing schedules and 
individual physiological differences in existing clinical workflows, this study proposes an adaptive 
decision-making model for NIPT timing based on BMI stratification and joint risk optimisation. A 
total of 605 clinical samples were processed through data standardisation, missing-value imputation, 
and categorical feature encoding. Spearman correlation and random forest regression were 
employed to analyse the multidimensional relationships between Y-chromosome concentration, 
gestational age, and BMI. Results showed that Y-chromosome concentration was significantly 
positively correlated with gestational age (ρ = 0.923) and negatively correlated with BMI (ρ = –
0.855). Based on these findings, K-means clustering was applied to stratify maternal BMI into three 
groups (20–31, 31–36, and 36–46), followed by the construction of a time–performance bi-
objective risk model to determine the optimal testing window. The model indicated that the optimal 
gestational weeks for testing were 13.9, 14.2, and 13.6 weeks for the respective BMI groups, with a 
stable interval concentrated around 13–14 weeks, validating the robustness and physiological 
consistency of the proposed framework. Furthermore, for female-fetus samples, an XGBoost-based 
anomaly discrimination model achieved Precision = 0.96, Recall = 0.87, and F1-score = 0.91 on the 
test set. SHAP based interpretability analysis identified Chr13_GC_Content, Chr21_GC_Content, 
and Maternal_BMI as the major contributing features. The results demonstrate that the proposed 
stratified optimisation model effectively enhances individualised timing recommendations for NIPT 
and provides interpretable bioinformatics insights for abnormal sample identification. 

1. Introduction  
Non-invasive prenatal testing (NIPT) is a genetic screening technology that utilises cell-free fetal 

DNA (cfDNA) from maternal peripheral blood to detect chromosomal abnormalities. Although this 
method has been widely applied in clinical practice, its detection performance is still influenced by 
the coupling effects of multiple factors such as gestational age, maternal body mass index (BMI), 
and sequencing quality [1-3]. The existing testing procedures typically adopt a fixed gestational age 
for sample collection, neglecting the dynamic impact of individual differences on the detection 
window. This leads to reduced detection accuracy and increased retest rates in samples with high 
BMI or early gestational age [4-6]. 

In recent years, the integration of artificial intelligence and multi-factor modelling in prenatal 
screening has provided new perspectives for optimising detection timing and improving 
identification performance. By performing multi-dimensional modelling on cfDNA concentration, 
maternal characteristics, and sequencing quality indicators, the non-linear relationship between 
testing timing and detection performance can be captured at the data level. Previous studies have 
shown that multivariable regression and tree-based models can effectively reveal the relationship 
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between fetal fractions and changes in gestational age and BMI [7,8]. However, most studies are 
still limited to univariate analysis or empirical threshold settings, lacking a mechanism for joint 
optimisation in a multi-dimensional risk space. At the same time, deep learning and ensemble 
learning models (such as XGBoost, CatBoost, etc.) have demonstrated their effectiveness in 
biological signal processing and genetic testing, where interpretable algorithms based on feature 
importance not only maintain high prediction accuracy but also reveal the physiological 
significance behind the variables [9-12]. 

In this context, this paper proposes an intelligent decision-making framework for NIPT timing 
based on multi-factor modelling and risk optimisation. The framework integrates both unsupervised 
clustering and interpretable supervised learning methods: (1) the K-means algorithm is used to 
automatically stratify maternal BMI, capturing the statistical distribution characteristics of cfDNA 
concentration under different body types and achieving modeling of population-level body 
heterogeneity [7]; (2) a time-performance dual-objective risk function is constructed, where the 
risks of detection timing deviation and model performance are jointly optimized, with grid search 
used to determine the optimal gestational week for each BMI group; (3) an XGBoost model is used 
to identify abnormalities in female fetal samples, and SHAP methods are applied to analyze feature 
contributions, thus providing biological interpretability for the detection model [13-15]. 

In summary, this paper aims to build an intelligent decision-making and risk modelling 
framework for NIPT timing, overcoming the limitations of fixed sampling strategies under 
individual differences. Through BMI stratification, risk function modelling, and interpretable 
machine learning, the study achieves the joint optimisation of detection timing and discrimination 
models within the same system. This method systematically characterises the interaction effects of 
multiple factors, such as gestational age, BMI, and sequencing quality, providing quantitative 
decision-making support and an algorithmic foundation for NIPT testing. This framework offers a 
general approach for multi-scenario detection optimisation based on cfDNA and lays the 
methodological foundation for the construction of intelligent prenatal screening systems. 

2. Data Preprocessing 
2.1 Text Data Encoding 

(1) Last Menstrual Period (LMP) Date Encoding 
The LMP date is recorded in the format "YYYY year MM month DD day". To ensure data 

standardisation and computational feasibility, it is converted into an 8-digit numeric string in the 
format "YYYYMMDD". This format helps avoid parsing errors and aligns with clinical data 
exchange standards, facilitating integration with other medical databases. 

(2) IVF Pregnancy Method Encoding 
The IVF pregnancy method (column G) includes three categories: "Natural Conception", 

"Artificial Insemination", and "In Vitro Fertilisation", which are encoded as 1, 2, and 3, respectively. 
This encoding serves as a categorical identifier and does not imply any inherent order or magnitude, 
ensuring that the variable retains its categorical nature in the model. 

(3) Gestational Age at Testing Encoding 
The gestational age at testing (column J) is recorded in the format "weeks w+days d" (e.g., 

"11w+6", "13w+2"). This format is not suitable for direct use in regression analysis and needs to be 
converted into a continuous decimal form using the following formula: 

 7 weeks daysEncoded Gestational Age
7

× +
=  (1) 

This method enables the high-precision quantification of gestational age, making it suitable for 
linear regression and time series analysis. 

(4) Chromosomal Aneuploidy Encoding 
Chromosomal aneuploidy (columns AB) involves only chromosomes 13, 18, and 21. A blank 

entry indicates no abnormalities and is encoded as 0, while T13, T18, and T21 are encoded as 1, 2, 
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and 3, respectively. In cases of multiple chromosomal abnormalities, a combined encoding is used 
(e.g., T13 + T18 = 12). The encoded results can be directly used as the target variable in 
classification models. 

(5) Pregnancy Count Encoding 
The pregnancy count (column AC) is represented as "1", "2", or "≥3". The value "≥3" is 

uniformly encoded as 3 to maintain the risk level differences and reduce the dimensionality of the 
variable. 

(6) Fetal Health Status Encoding 
The fetal health status (column AE) is recorded as "Yes" or "No", corresponding to encodings of 

1 and 0, respectively. This binary encoding facilitates usage in subsequent statistical and machine 
learning models while preserving the original semantic features of the variable. 

2.2 Missing Value Imputation 
In this study, the mean imputation method is used to handle missing values for numerical 

variables. This method is based on the "missing at random" assumption, which posits that the 
occurrence of missing data depends on observed variables, not the missing values themselves. By 
replacing missing data with the arithmetic mean of the variable, data integrity is restored while 
maintaining the overall central tendency of the data distribution. 

2.3 Correlation Analysis 
Based on the NIPT clinical detection data, a systematic analysis is conducted to explore the 

relationship between fetal Y-chromosome concentration and maternal characteristics such as 
gestational age and BMI. A random forest regression model is built to model the non-linear 
mapping relationship between Y-chromosome concentration and multiple factors. The training 
sample size is 605, with 28 features. The results show that the model achieves a high fitting 
accuracy with R² = 0.9322 for the training set and R² = 0.9170 for the test set. As shown in Figure 1, 
the importance ranking of features includes X-chromosome concentration, Y-chromosome Z-score, 
gestational age, BMI, and X-chromosome Z-score as the top five most important indicators, 
consistent with the results of the correlation analysis. This indicates that the model has good 
interpretability and robustness. 

 
Figure 1. Feature Importance of Random Forest Model 

3. Model Development 
3.1 Optimised NIPT Timing Model Based on BMI Grouping 

This study aims to construct an optimal timing determination model for non-invasive prenatal 
testing (NIPT) based on maternal BMI grouping, in order to achieve a balance between detection 
timing and detection performance risk. The overall framework of the model consists of three core 
modules: 

(1) BMI Grouping Module: The K-means clustering algorithm is used to automatically group 
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maternal BMI data, identifying distinct maternal groups based on body type characteristics. 
(2) Time Risk Modelling Module: A quantitative relationship function is established between the 

detection timing and associated risks. 
(3) Multi-Objective Optimisation Decision Module: The optimal detection timing for each BMI 

group is determined by comprehensively optimising the dual-risk function based on time and 
performance. 

This framework provides personalised NIPT timing recommendations for maternal groups with 
different BMI characteristics, achieving dual optimisation of detection accuracy and clinical risk 
control. 
3.1.1 BMI Grouping Algorithm 

In this study, the K-means clustering algorithm is used to group maternal BMI data, enabling 
automatic recognition of body type differences. To evaluate the clustering performance, the 
Silhouette Score is introduced as a comprehensive index. The clustering quality is assessed by 
comparing results from different numbers of groups, and the optimal grouping solution is selected 
when the silhouette score reaches its maximum. Specifically, multiple iterations are performed 
within the candidate range of 2 to 6 groups, and the result corresponding to the maximum silhouette 
score is adopted as the final grouping structure. To ensure the reproducibility of the experiment, a 
fixed random seed (random_state = 42) is set. In cases where the sample size is small (less than 4), 
the system automatically adopts a single-group strategy to avoid overfitting and instability in 
clustering boundaries. This method effectively captures differences between maternal groups with 
varying body type characteristics, providing a reasonable stratification basis for subsequent risk 
modelling and optimal detection timing optimisation. 

 
Figure 2. Silhouette Score Plot 

Figure 2 shows the variation of the silhouette score with different numbers of clusters. The 
silhouette score reaches its highest value (approximately 0.59) when the number of clusters is 3, 
indicating the best clustering performance with tight intra-group samples and clear separation 
between groups. Therefore, this study selects three groups as the optimal BMI grouping scheme for 
pregnant women. 

 
Figure 3. Clustering Result Scatter Plot 
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Figure 3 illustrates the BMI sample distribution based on K-means clustering. Different colours 
represent distinct grouping categories, with the horizontal axis showing maternal BMI values and 
the vertical axis representing the corresponding cluster labels. The results reveal clear stratification 
among the three groups based on BMI ranges: the low BMI group is concentrated around the 20–31 
range, the medium BMI group falls within the 31–36 range, and the high BMI group is primarily 
distributed within the 36–46 range. This demonstrates that the grouping results possess good 
interpretability and distinct separation. 

3.1.2 Time-Performance Risk Balancing Model and Optimal Timing Solution 
To achieve a dynamic balance between detection timing and detection performance, this study 

constructs a joint risk function, which is represented in a linear weighted sum form as follows: 

 total (1 )t pR aR a R= + −  (2) 

Where Rt represents the time risk (the risk associated with detection being too early or too late), 
and Rp represents the performance risk. The weight aaa satisfies the normalisation condition 
a+(1−a)=1. The setting of the weight reflects the priority of time risk in practical clinical 
applications, i.e., when a>0.5, the time factor is considered more important. 

For each BMI group, a grid search is performed within the gestational age range of [8, 40] weeks 
with a step size of 0.1 weeks. The total risk Rtotal is calculated at each point to find the optimal 
detection timing T∗ that minimises the risk function: 

 *
[8,40] totalarg min ( )TT R T∈=  (3) 

Through this optimisation process, the optimal detection time range for each BMI group can be 
obtained, enabling personalised NIPT timing recommendations for pregnant women with different 
body types. 

3.2 Fetal Abnormality Classification Prediction Model Based on XGBoost Algorithm 
XGBoost is an efficient improvement of the Gradient Boosting Decision Tree (GBDT) algorithm, 

and its core structure is still based on an ensemble decision tree model. GBDT works by iteratively 
reducing the gradient of the loss function, combining multiple weak classifiers into a strong 
classifier to improve overall prediction accuracy. However, traditional GBDT faces issues such as 
low computational efficiency and susceptibility to overfitting. To address these problems, XGBoost 
introduces regularisation terms and second-order gradient information to control model complexity 
and accelerate convergence. 

In XGBoost, the model's predicted output can be represented as the cumulative output of 
multiple trees: 

 
1

ˆ ( ),
K

i k i k
k

y f x f F
=

= ∈∑  (4) 

Where F represents the function space of all possible tree structures, and fk refers to the k-th 
regression tree. The objective of model training is to minimise the overall objective function, which 
includes both the loss term and the regularisation term: 

 ˆ( , ) ( )i i k
i k

l y y f= + Ω∑ ∑  (5) 

In the equation, l(yi,y^i) represents the loss function between the predicted value and the true 
value, while Ω(fk) is the regularisation term, which is used to constrain the model complexity and 
prevent overfitting. 

To improve optimisation efficiency, XGBoost approximates the loss function using a second-
order Taylor expansion: 

 ( ) 21[ ( ) ( )] Ω( )
2

t
i t i i t i t

i
g f x h f x f≈ ∑ + +  (6) 
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By minimising the above objective function, the optimal weight for each leaf node can be 
obtained as follows: 
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The final minimum value of the objective function is given by: 
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Where λ and γ are the regularisation coefficients and the penalty term for the number of leaf 
nodes, respectively. If the information gain resulting from a split is below a certain threshold, the 
tree growth stops, thus preventing structural overfitting. 

4. Results and Conclusions 
4.1 Time-Performance Risk Balancing Model and Optimal Timing 

 
(a) Group 0 risk curves  (b) Group 0 earliest reach distribution 

 
(c) Group 1 risk curves  (d) Group 1 earliest reach distribution 

 
(e) Group 2 risk curves  (f) Group 2 earliest reach distribution 

Figure 4. Risk Solution 
Figure 4 illustrates the optimisation results based on the joint risk function for different BMI 

groups, systematically depicting the dynamic impact of gestational age changes on time risk, 
performance risk, and their weighted combined risk. Figure 4(a), (c), (e) shows the continuous 
evolution of the risk function with respect to gestational age. Figure 4(b), (d), (f) reflects the 
distribution characteristics of the gestational weeks at which the fetal Y-chromosome concentration 
first reaches the detection threshold. Overall, the risk curves for each group exhibit typical 
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crossover and convergence patterns within the gestational age range, validating the inverse 
relationship between time risk and performance risk. This demonstrates that as the detection timing 
is optimised, both time and performance risks are dynamically balanced, supporting the 
effectiveness of the proposed model for personalised NIPT timing recommendations. 

Specifically, Figure 4(a) and (b) for the low BMI group (Group 0, approximately 20–31) show 
that time risk increases linearly with gestational age, while performance risk decreases sharply after 
13 weeks. The two risks intersect around 13.9 weeks, at which point the combined risk reaches its 
global minimum. The gestational weeks at which fetal Y-chromosome concentration first meets the 
detection threshold are primarily concentrated in the 12–14 week range, indicating that lower body 
fat levels contribute to earlier detection of fetal cfDNA, thereby advancing the optimal detection 
time. In Figures 4(c) and (d), the risk trends for the moderate BMI group (Group 1, approximately 
31–36) are generally consistent with those of the low BMI group, but the combined risk curve is 
slightly shifted to the right. The minimum risk occurs around 14.2 weeks, suggesting that an 
increase in BMI may delay the time at which fetal cfDNA reaches the detection threshold, resulting 
in a later optimal detection time. In contrast, Figure 4(e) and (f) for the high BMI group (Group 2, 
approximately 36–46) show that the rate of decrease in performance risk slows significantly, 
leading to a flatter total risk curve. The optimal detection time is slightly advanced to 13.6 weeks, 
but the gestational weeks at which fetal Y-chromosome concentration first meets the threshold are 
more dispersed (around 12–18 weeks). This reflects stronger individual variability among high BMI 
samples. 

By analysing the results across all three groups, it can be concluded that the joint risk model 
reaches a global minimum within the 13-14 week range, indicating that this gestational age window 
is the optimal stable period for minimising combined detection risk. This result, both statistically 
and physiologically, confirms the robustness and rationality of the model, demonstrating that the 
time-performance trade-off model effectively accommodates individual differences based on body 
type, providing a quantitative basis for personalised decision-making regarding the timing of NIPT. 

4.2 Fetal Abnormality Classification Based on XGBoost Algorithm 

 
Figure 5. Confusion Matrix of Classification Results 

Figure 5 shows the confusion matrix of the classification results based on the XGBoost model, 
used to evaluate the overall performance of the fetal abnormality detection model. From the results, 
it is apparent that the model achieves high accuracy in predicting normal samples, correctly 
identifying 94 normal samples, with only 14 misclassified as abnormal. For the abnormal samples, 
3 were correctly identified, while 10 were misclassified as normal. Overall, despite a limited 
number of training samples and an imbalance in the number of abnormal samples, the model 
maintains good prediction stability and generalisation ability. The precision calculated from the 
confusion matrix is 0.96, the recall is 0.87, and the F1-score is 0.91, indicating that the model 
performs significantly better in identifying normal samples than abnormal ones. This phenomenon 
is mainly due to the class imbalance in the dataset and the complexity of the abnormal sample 
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features. Nevertheless, the model still shows a reasonable level of sensitivity to the abnormal class, 
successfully identifying potential abnormal signals in the multi-dimensional feature space. This 
provides a reliable foundation for subsequent multi-factor fusion diagnosis. 

Figure 6 shows the SHAP (Shapley Additive exPlanations) value distribution of feature 
importance based on the XGBoost model. The SHAP method, derived from game theory, calculates 
the marginal contribution of each feature to the prediction of a single sample. The average absolute 
value of SHAP values reflects the importance of features in the overall model output. From the 
figure, it is evident that Chr13_GC_Content, Chr21_GC_Content, and Maternal_BMI have the 
highest contributions to the model's predictions, indicating that variations in chromosomal GC 
content and maternal body mass index play a crucial role in predicting abnormalities. Additionally, 
features such as Duplicate_Read_Rate, Age, and GC_Content also show some predictive relevance, 
reflecting the combined impact of sequencing data quality and individual physiological 
characteristics on the model’s classification performance. The colour gradient in the figure, ranging 
from blue to red, represents the variation of feature values from low to high, while the distribution 
direction of the points indicates the positive or negative influence of each feature on the model's 
output. Overall, this distribution reveals the sensitivity of the model to different features and their 
contribution directions, demonstrating the model's interpretability and biological rationality. It 
provides a basis for further analysis of the relationship between maternal characteristics and 
chromosomal abnormality risks. 

 
Figure 6. SHAP Value Distribution of Feature Importance Based on XGBoost Model 

5. Conclusions 
This study addresses the optimisation of NIPT detection timing and abnormality recognition, 

establishing a systematic framework from data preprocessing, feature association analysis, to risk 
modelling and interpretability validation. The main conclusions are as follows: 

(1) Key Influencing Factors for Y-Chromosome Concentration Identified. It has been verified 
that the concentration of fetal cfDNA (Y-chromosome concentration) increases significantly with 
gestational age, while the Y-chromosome concentration is generally lower in high BMI samples. 
BMI, gestational age, and sequencing characteristics (such as alignment rate and duplicate read rate) 
are critical variables affecting the accuracy of NIPT. 

(2) Significant Detection Timing Differences After BMI Stratification. The three BMI groups 
derived from K-means clustering revealed the impact of body type on the detection window. Low 
BMI group: optimal timing at 13.9 weeks; Medium BMI group: optimal timing at 14.2 weeks; High 
BMI group: optimal timing at 13.6 weeks. All three groups' optimal times concentrated in the stable 
13-14 week window. This provides a quantifiable reference for clinical detection timing. 

(3) Stability and Interpretability of the Risk Model. The joint risk function can balance the trade-
off between early detection and performance decline, and the optimal detection times derived from 
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the model exhibit both statistical consistency and physiological rationality. The model can offer 
adaptive detection strategies for different BMI groups, reducing retest rates and improving detection 
pass rates. 

(4) Effective Abnormality Detection with the XGBoost Model. Despite sample imbalance, the 
XGBoost model achieved a high F1-score of 0.91. SHAP analysis revealed that GC content and 
BMI are the main driving factors, reflecting the biological interpretability and robustness of the 
algorithm. 

While this study has provided valuable insights, there are some limitations. Due to the limited 
sample size and imbalance in abnormal sample proportions, the model’s recognition ability for 
minority class samples is still insufficient, and the risk estimation stability for extreme BMI 
intervals is affected. Moreover, as the data comes from a single testing institution, potential batch 
effects and sequencing biases may limit the model's external generalisation. Furthermore, certain 
potential confounding factors (such as fetal fraction, the time between blood collection and 
sequencing, and pregnancy complications) were not included in the joint modelling. The optimal 
detection time was estimated as a point estimate, without quantifying uncertainty or sensitivity to 
weight. 

Future work will aim to improve the model by expanding the multi-centre sample size, 
incorporating mixed effects and Bayesian modelling, using cost-sensitive and robust learning 
algorithms to address class imbalance, and combining uncertainty estimation with dynamic 
decision-making mechanisms to achieve adaptive optimisation of detection timing and abnormality 
recognition. These improvements will further enhance the model’s generalisation capability and 
clinical applicability. 
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