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Abstract: Non-invasive prenatal testing (NIPT), a genetic screening technology based on cell-free
fetal DNA (cfDNA) in maternal peripheral blood, has become a crucial approach for the early
detection of fetal chromosomal abnormalities. However, its detection accuracy and optimal testing
window are influenced by multiple factors, including gestational age, maternal body mass index
(BMI), and sequencing quality. To address the mismatch between unified testing schedules and
individual physiological differences in existing clinical workflows, this study proposes an adaptive
decision-making model for NIPT timing based on BMI stratification and joint risk optimisation. A
total of 605 clinical samples were processed through data standardisation, missing-value imputation,
and categorical feature encoding. Spearman correlation and random forest regression were
employed to analyse the multidimensional relationships between Y-chromosome concentration,
gestational age, and BMI. Results showed that Y-chromosome concentration was significantly
positively correlated with gestational age (p = 0.923) and negatively correlated with BMI (p = —
0.855). Based on these findings, K-means clustering was applied to stratify maternal BMI into three
groups (20-31, 31-36, and 36-46), followed by the construction of a time—performance bi-
objective risk model to determine the optimal testing window. The model indicated that the optimal
gestational weeks for testing were 13.9, 14.2, and 13.6 weeks for the respective BMI groups, with a
stable interval concentrated around 13-14 weeks, validating the robustness and physiological
consistency of the proposed framework. Furthermore, for female-fetus samples, an XGBoost-based
anomaly discrimination model achieved Precision = 0.96, Recall = 0.87, and F1-score = 0.91 on the
test set. SHAP based interpretability analysis identified Chr13_GC Content, Chr21 GC_Content,
and Maternal BMI as the major contributing features. The results demonstrate that the proposed
stratified optimisation model effectively enhances individualised timing recommendations for NIPT
and provides interpretable bioinformatics insights for abnormal sample identification.

1. Introduction

Non-invasive prenatal testing (NIPT) is a genetic screening technology that utilises cell-free fetal
DNA (cfDNA) from maternal peripheral blood to detect chromosomal abnormalities. Although this
method has been widely applied in clinical practice, its detection performance is still influenced by
the coupling effects of multiple factors such as gestational age, maternal body mass index (BMI),
and sequencing quality [1-3]. The existing testing procedures typically adopt a fixed gestational age
for sample collection, neglecting the dynamic impact of individual differences on the detection
window. This leads to reduced detection accuracy and increased retest rates in samples with high
BMI or early gestational age [4-6].

In recent years, the integration of artificial intelligence and multi-factor modelling in prenatal
screening has provided new perspectives for optimising detection timing and improving
identification performance. By performing multi-dimensional modelling on cfDNA concentration,
maternal characteristics, and sequencing quality indicators, the non-linear relationship between
testing timing and detection performance can be captured at the data level. Previous studies have
shown that multivariable regression and tree-based models can effectively reveal the relationship
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between fetal fractions and changes in gestational age and BMI [7,8]. However, most studies are
still limited to univariate analysis or empirical threshold settings, lacking a mechanism for joint
optimisation in a multi-dimensional risk space. At the same time, deep learning and ensemble
learning models (such as XGBoost, CatBoost, etc.) have demonstrated their effectiveness in
biological signal processing and genetic testing, where interpretable algorithms based on feature
importance not only maintain high prediction accuracy but also reveal the physiological
significance behind the variables [9-12].

In this context, this paper proposes an intelligent decision-making framework for NIPT timing
based on multi-factor modelling and risk optimisation. The framework integrates both unsupervised
clustering and interpretable supervised learning methods: (1) the K-means algorithm is used to
automatically stratify maternal BMI, capturing the statistical distribution characteristics of cfDNA
concentration under different body types and achieving modeling of population-level body
heterogeneity [7]; (2) a time-performance dual-objective risk function is constructed, where the
risks of detection timing deviation and model performance are jointly optimized, with grid search
used to determine the optimal gestational week for each BMI group; (3) an XGBoost model is used
to identify abnormalities in female fetal samples, and SHAP methods are applied to analyze feature
contributions, thus providing biological interpretability for the detection model [13-15].

In summary, this paper aims to build an intelligent decision-making and risk modelling
framework for NIPT timing, overcoming the limitations of fixed sampling strategies under
individual differences. Through BMI stratification, risk function modelling, and interpretable
machine learning, the study achieves the joint optimisation of detection timing and discrimination
models within the same system. This method systematically characterises the interaction effects of
multiple factors, such as gestational age, BMI, and sequencing quality, providing quantitative
decision-making support and an algorithmic foundation for NIPT testing. This framework offers a
general approach for multi-scenario detection optimisation based on cfDNA and lays the
methodological foundation for the construction of intelligent prenatal screening systems.

2. Data Preprocessing
2.1 Text Data Encoding

(1) Last Menstrual Period (LMP) Date Encoding

The LMP date is recorded in the format "YYYY year MM month DD day". To ensure data
standardisation and computational feasibility, it is converted into an 8-digit numeric string in the
format "YYYYMMDD". This format helps avoid parsing errors and aligns with clinical data
exchange standards, facilitating integration with other medical databases.

(2) IVF Pregnancy Method Encoding

The IVF pregnancy method (column G) includes three categories: "Natural Conception",
"Artificial Insemination", and "In Vitro Fertilisation", which are encoded as 1, 2, and 3, respectively.
This encoding serves as a categorical identifier and does not imply any inherent order or magnitude,
ensuring that the variable retains its categorical nature in the model.

(3) Gestational Age at Testing Encoding

The gestational age at testing (column J) is recorded in the format "weeks w+days d" (e.g.,
"11w+6", "13w+2"). This format is not suitable for direct use in regression analysis and needs to be
converted into a continuous decimal form using the following formula:

7 x weeks + days
— (1)

Encoded Gestational Age = ;

This method enables the high-precision quantification of gestational age, making it suitable for
linear regression and time series analysis.

(4) Chromosomal Aneuploidy Encoding

Chromosomal aneuploidy (columns AB) involves only chromosomes 13, 18, and 21. A blank
entry indicates no abnormalities and is encoded as 0, while T13, T18, and T21 are encoded as 1, 2,
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and 3, respectively. In cases of multiple chromosomal abnormalities, a combined encoding is used
(e.g., T13 + TI8 = 12). The encoded results can be directly used as the target variable in
classification models.

(5) Pregnancy Count Encoding

The pregnancy count (column AC) is represented as "1", "2", or ">3". The value ">3" is
uniformly encoded as 3 to maintain the risk level differences and reduce the dimensionality of the
variable.

(6) Fetal Health Status Encoding

The fetal health status (column AE) is recorded as "Yes" or "No", corresponding to encodings of
1 and 0, respectively. This binary encoding facilitates usage in subsequent statistical and machine
learning models while preserving the original semantic features of the variable.

2.2 Missing Value Imputation

In this study, the mean imputation method is used to handle missing values for numerical
variables. This method is based on the "missing at random" assumption, which posits that the
occurrence of missing data depends on observed variables, not the missing values themselves. By
replacing missing data with the arithmetic mean of the variable, data integrity is restored while
maintaining the overall central tendency of the data distribution.

2.3 Correlation Analysis

Based on the NIPT clinical detection data, a systematic analysis is conducted to explore the
relationship between fetal Y-chromosome concentration and maternal characteristics such as
gestational age and BMI. A random forest regression model is built to model the non-linear
mapping relationship between Y-chromosome concentration and multiple factors. The training
sample size is 605, with 28 features. The results show that the model achieves a high fitting
accuracy with R? = 0.9322 for the training set and R? = 0.9170 for the test set. As shown in Figure 1,
the importance ranking of features includes X-chromosome concentration, Y-chromosome Z-score,
gestational age, BMI, and X-chromosome Z-score as the top five most important indicators,
consistent with the results of the correlation analysis. This indicates that the model has good
interpretability and robustness.
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Figure 1. Feature Importance of Random Forest Model

3. Model Development
3.1 Optimised NIPT Timing Model Based on BMI Grouping

This study aims to construct an optimal timing determination model for non-invasive prenatal
testing (NIPT) based on maternal BMI grouping, in order to achieve a balance between detection
timing and detection performance risk. The overall framework of the model consists of three core
modules:

(1) BMI Grouping Module: The K-means clustering algorithm is used to automatically group

85



maternal BMI data, identifying distinct maternal groups based on body type characteristics.

(2) Time Risk Modelling Module: A quantitative relationship function is established between the
detection timing and associated risks.

(3) Multi-Objective Optimisation Decision Module: The optimal detection timing for each BMI
group is determined by comprehensively optimising the dual-risk function based on time and
performance.

This framework provides personalised NIPT timing recommendations for maternal groups with
different BMI characteristics, achieving dual optimisation of detection accuracy and clinical risk
control.

3.1.1 BMI Grouping Algorithm

In this study, the K-means clustering algorithm is used to group maternal BMI data, enabling
automatic recognition of body type differences. To evaluate the clustering performance, the
Silhouette Score is introduced as a comprehensive index. The clustering quality is assessed by
comparing results from different numbers of groups, and the optimal grouping solution is selected
when the silhouette score reaches its maximum. Specifically, multiple iterations are performed
within the candidate range of 2 to 6 groups, and the result corresponding to the maximum silhouette
score is adopted as the final grouping structure. To ensure the reproducibility of the experiment, a
fixed random seed (random_state = 42) is set. In cases where the sample size is small (less than 4),
the system automatically adopts a single-group strategy to avoid overfitting and instability in
clustering boundaries. This method effectively captures differences between maternal groups with
varying body type characteristics, providing a reasonable stratification basis for subsequent risk
modelling and optimal detection timing optimisation.
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Figure 2. Silhouette Score Plot

Figure 2 shows the variation of the silhouette score with different numbers of clusters. The
silhouette score reaches its highest value (approximately 0.59) when the number of clusters is 3,
indicating the best clustering performance with tight intra-group samples and clear separation
between groups. Therefore, this study selects three groups as the optimal BMI grouping scheme for
pregnant women.
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Figure 3. Clustering Result Scatter Plot
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Figure 3 illustrates the BMI sample distribution based on K-means clustering. Different colours
represent distinct grouping categories, with the horizontal axis showing maternal BMI values and
the vertical axis representing the corresponding cluster labels. The results reveal clear stratification
among the three groups based on BMI ranges: the low BMI group is concentrated around the 20-31
range, the medium BMI group falls within the 31-36 range, and the high BMI group is primarily
distributed within the 3646 range. This demonstrates that the grouping results possess good
interpretability and distinct separation.

3.1.2 Time-Performance Risk Balancing Model and Optimal Timing Solution

To achieve a dynamic balance between detection timing and detection performance, this study
constructs a joint risk function, which is represented in a linear weighted sum form as follows:

R,y =aR +(1-a)R, (2)

total

Where R: represents the time risk (the risk associated with detection being too early or too late),
and R, represents the performance risk. The weight aaa satisfies the normalisation condition
at(1—a)=1. The setting of the weight reflects the priority of time risk in practical clinical
applications, i.e., when a>0.5, the time factor is considered more important.

For each BMI group, a grid search is performed within the gestational age range of [8, 40] weeks
with a step size of 0.1 weeks. The total risk Riwotal 1s calculated at each point to find the optimal
detection timing 7* that minimises the risk function:

T" = arg minTe[8,40] R (T) (3)

Through this optimisation process, the optimal detection time range for each BMI group can be
obtained, enabling personalised NIPT timing recommendations for pregnant women with different
body types.

3.2 Fetal Abnormality Classification Prediction Model Based on XGBoost Algorithm

XGBoost is an efficient improvement of the Gradient Boosting Decision Tree (GBDT) algorithm,
and its core structure is still based on an ensemble decision tree model. GBDT works by iteratively
reducing the gradient of the loss function, combining multiple weak classifiers into a strong
classifier to improve overall prediction accuracy. However, traditional GBDT faces issues such as
low computational efficiency and susceptibility to overfitting. To address these problems, XGBoost
introduces regularisation terms and second-order gradient information to control model complexity
and accelerate convergence.

In XGBoost, the model's predicted output can be represented as the cumulative output of
multiple trees:

EDWACONNA )

Where F represents the function space of all possible tree structures, and fi refers to the k-th
regression tree. The objective of model training is to minimise the overall objective function, which
includes both the loss term and the regularisation term:

'C:Zl(yi’j}i)-‘rzg(.ﬁr) (5)

In the equation, /(yi,y"/) represents the loss function between the predicted value and the true
value, while Q(fx) is the regularisation term, which is used to constrain the model complexity and
prevent overfitting.

To improve optimisation efficiency, XGBoost approximates the loss function using a second-
order Taylor expansion:

£ = X1 5+ S0 (©)

87



By minimising the above objective function, the optimal weight for each leaf node can be
obtained as follows:

zgi

Wj =—W (7)

iel i
The final minimum value of the objective function is given by:

Qg)

Codn ®)

iel;

Where 1 and y are the regularisation coefficients and the penalty term for the number of leaf
nodes, respectively. If the information gain resulting from a split is below a certain threshold, the
tree growth stops, thus preventing structural overfitting.

4. Results and Conclusions

4.1 Time-Performance Risk Balancing Model and Optimal Timing
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Figure 4. Risk Solution

Figure 4 illustrates the optimisation results based on the joint risk function for different BMI
groups, systematically depicting the dynamic impact of gestational age changes on time risk,
performance risk, and their weighted combined risk. Figure 4(a), (c), (e) shows the continuous
evolution of the risk function with respect to gestational age. Figure 4(b), (d), (f) reflects the
distribution characteristics of the gestational weeks at which the fetal Y-chromosome concentration
first reaches the detection threshold. Overall, the risk curves for each group exhibit typical
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crossover and convergence patterns within the gestational age range, validating the inverse
relationship between time risk and performance risk. This demonstrates that as the detection timing
is optimised, both time and performance risks are dynamically balanced, supporting the
effectiveness of the proposed model for personalised NIPT timing recommendations.

Specifically, Figure 4(a) and (b) for the low BMI group (Group 0, approximately 20-31) show
that time risk increases linearly with gestational age, while performance risk decreases sharply after
13 weeks. The two risks intersect around 13.9 weeks, at which point the combined risk reaches its
global minimum. The gestational weeks at which fetal Y-chromosome concentration first meets the
detection threshold are primarily concentrated in the 12—14 week range, indicating that lower body
fat levels contribute to earlier detection of fetal cfDNA, thereby advancing the optimal detection
time. In Figures 4(c) and (d), the risk trends for the moderate BMI group (Group 1, approximately
31-36) are generally consistent with those of the low BMI group, but the combined risk curve is
slightly shifted to the right. The minimum risk occurs around 14.2 weeks, suggesting that an
increase in BMI may delay the time at which fetal cfDNA reaches the detection threshold, resulting
in a later optimal detection time. In contrast, Figure 4(e) and (f) for the high BMI group (Group 2,
approximately 36—46) show that the rate of decrease in performance risk slows significantly,
leading to a flatter total risk curve. The optimal detection time is slightly advanced to 13.6 weeks,
but the gestational weeks at which fetal Y-chromosome concentration first meets the threshold are
more dispersed (around 12—18 weeks). This reflects stronger individual variability among high BMI
samples.

By analysing the results across all three groups, it can be concluded that the joint risk model
reaches a global minimum within the 13-14 week range, indicating that this gestational age window
is the optimal stable period for minimising combined detection risk. This result, both statistically
and physiologically, confirms the robustness and rationality of the model, demonstrating that the
time-performance trade-off model effectively accommodates individual differences based on body
type, providing a quantitative basis for personalised decision-making regarding the timing of NIPT.

4.2 Fetal Abnormality Classification Based on XGBoost Algorithm
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Figure 5. Confusion Matrix of Classification Results

Figure 5 shows the confusion matrix of the classification results based on the XGBoost model,
used to evaluate the overall performance of the fetal abnormality detection model. From the results,
it is apparent that the model achieves high accuracy in predicting normal samples, correctly
identifying 94 normal samples, with only 14 misclassified as abnormal. For the abnormal samples,
3 were correctly identified, while 10 were misclassified as normal. Overall, despite a limited
number of training samples and an imbalance in the number of abnormal samples, the model
maintains good prediction stability and generalisation ability. The precision calculated from the
confusion matrix is 0.96, the recall is 0.87, and the Fl-score is 0.91, indicating that the model
performs significantly better in identifying normal samples than abnormal ones. This phenomenon
is mainly due to the class imbalance in the dataset and the complexity of the abnormal sample
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features. Nevertheless, the model still shows a reasonable level of sensitivity to the abnormal class,
successfully identifying potential abnormal signals in the multi-dimensional feature space. This
provides a reliable foundation for subsequent multi-factor fusion diagnosis.

Figure 6 shows the SHAP (Shapley Additive exPlanations) value distribution of feature
importance based on the XGBoost model. The SHAP method, derived from game theory, calculates
the marginal contribution of each feature to the prediction of a single sample. The average absolute
value of SHAP values reflects the importance of features in the overall model output. From the
figure, it is evident that Chr13_GC Content, Chr21 GC Content, and Maternal BMI have the
highest contributions to the model's predictions, indicating that variations in chromosomal GC
content and maternal body mass index play a crucial role in predicting abnormalities. Additionally,
features such as Duplicate Read Rate, Age, and GC_Content also show some predictive relevance,
reflecting the combined impact of sequencing data quality and individual physiological
characteristics on the model’s classification performance. The colour gradient in the figure, ranging
from blue to red, represents the variation of feature values from low to high, while the distribution
direction of the points indicates the positive or negative influence of each feature on the model's
output. Overall, this distribution reveals the sensitivity of the model to different features and their
contribution directions, demonstrating the model's interpretability and biological rationality. It
provides a basis for further analysis of the relationship between maternal characteristics and
chromosomal abnormality risks.
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Figure 6. SHAP Value Distribution of Feature Importance Based on XGBoost Model

5. Conclusions

This study addresses the optimisation of NIPT detection timing and abnormality recognition,
establishing a systematic framework from data preprocessing, feature association analysis, to risk
modelling and interpretability validation. The main conclusions are as follows:

(1) Key Influencing Factors for Y-Chromosome Concentration Identified. It has been verified
that the concentration of fetal cfDNA (Y-chromosome concentration) increases significantly with
gestational age, while the Y-chromosome concentration is generally lower in high BMI samples.
BMI, gestational age, and sequencing characteristics (such as alignment rate and duplicate read rate)
are critical variables affecting the accuracy of NIPT.

(2) Significant Detection Timing Differences After BMI Stratification. The three BMI groups
derived from K-means clustering revealed the impact of body type on the detection window. Low
BMI group: optimal timing at 13.9 weeks; Medium BMI group: optimal timing at 14.2 weeks; High
BMI group: optimal timing at 13.6 weeks. All three groups' optimal times concentrated in the stable
13-14 week window. This provides a quantifiable reference for clinical detection timing.

(3) Stability and Interpretability of the Risk Model. The joint risk function can balance the trade-
off between early detection and performance decline, and the optimal detection times derived from
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the model exhibit both statistical consistency and physiological rationality. The model can offer
adaptive detection strategies for different BMI groups, reducing retest rates and improving detection
pass rates.

(4) Effective Abnormality Detection with the XGBoost Model. Despite sample imbalance, the
XGBoost model achieved a high Fl-score of 0.91. SHAP analysis revealed that GC content and
BMI are the main driving factors, reflecting the biological interpretability and robustness of the
algorithm.

While this study has provided valuable insights, there are some limitations. Due to the limited
sample size and imbalance in abnormal sample proportions, the model’s recognition ability for
minority class samples is still insufficient, and the risk estimation stability for extreme BMI
intervals is affected. Moreover, as the data comes from a single testing institution, potential batch
effects and sequencing biases may limit the model's external generalisation. Furthermore, certain
potential confounding factors (such as fetal fraction, the time between blood collection and
sequencing, and pregnancy complications) were not included in the joint modelling. The optimal
detection time was estimated as a point estimate, without quantifying uncertainty or sensitivity to
weight.

Future work will aim to improve the model by expanding the multi-centre sample size,
incorporating mixed effects and Bayesian modelling, using cost-sensitive and robust learning
algorithms to address class imbalance, and combining uncertainty estimation with dynamic
decision-making mechanisms to achieve adaptive optimisation of detection timing and abnormality
recognition. These improvements will further enhance the model’s generalisation capability and
clinical applicability.
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